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Following ideas developed in the field of hydrodynamic stability of laminar flows 
(Stuart 1971) a predictive theory is proposed to determine the development of 
finite-amplitude alternate bars in straight channels with erodible bottoms. It is shown 
that an ‘equilibrium amplitude’ of bedforms is reached as t+ 00 within a wide range 
of values of the parameter (t3-Bc)/& where t is the time, /3 is the width ratio of the 
channel and Bc is its ‘critical’ value below which bars would not form. The theory 
leads to relationships for the maximum height and the maximum scour of bars which 
compare satisfactorily with the experimental data of various authors. Moreover the 
experimentally detected tendency of the bed perturbation to form diagonal fronts 
is qualitatively reproduced. 

1. Introduction 
River flow provides a fascinating phenomenon where the interaction between the 

fluid and its container determines the shape of the latter. This is mostly due to the 
non-cohesive character of river beds and banks though some interaction does also 
occur when river boundaries are cohesive. We restrict our attention to the case of 
non-cohesive boundaries, which exhibits an extraordinary variety of forms. In  fact 
depending on sediment and flow parameters the flow-bottom interaction in straight 
channels may occur on a microscale (of the order of sediment size) leading to ‘rippled ’ 
beds, or on a macroscale (of the order of flow depth) leading to the formation of 
‘dunes’ or ‘antidunes ’) or finally on a megascale (of the order of channel width) which 
gives rise to the development of ‘ bars’. Various other modes of interaction may occur 
including that associated with bank erosion leading to variation of channel alignment 
(meandering). 

Each of the above processes can be explained in terms of an instability mechanism 
whereby under suitable circumstances flow in a straight channel with a flat erodible 
bottom loses stability to a perturbed configuration characterized by disturbances of 
different spatial scales. It is well known from experiments that these disturbances 
have a propagating character and grow until they reach an ‘equilibrium amplitude ’. 
In the last few decades a large number of studies have been devoted to the 
understanding of the above mechanism and to predicting the conditions for the 
formation of bed and channel forms. These studies were mostly linear stability 
theories of turbulent flow in straight channels with erodible boundaries. 

Though the theoretical treatment is complicated by the turbulent character of the 
flow field, the above studies were largely successful in that they were able to ascertain 
the physical mechanisms underlying the growth of perturbations of each of the above 
classes: ripples, dunes and antidunes (Kennedy 1963 ; Engelund 1970; Hayashi 1970; 
Richards 1980; Sumer & Bakioglu 1984); alternate and central bars (Hansen 1967; 
Callander 1969; Engelund & Skovgaard 1973; Parker 1976; Fredsee 1978); and 
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meandering (Ikeda, Parker & Sawai 1981 ; Kitanidis & Kennedy 1984 ; Blondeaux 
& Serninara 1985). 

Thus, even though some results are far from being conclusive, one can safely state 
that the body of knowledge accumulated on the linear aspects of these problems 
allows one to predict in gross terms : the growth rate of perturbations within the linear 
regime; the marginal stability conditions in the space of flow and sediment 
parameters; the wavelength and wave speed of perturbations selected, i.e. those 
corresponding to maximum growth rate. 

We should point out that the works on bar stability by Parker (1976) and Fredsrae 
(1978) among some others were based on two-dimensional models of the flow field. 

However, concerning the fundamental problem of predicting an ‘equilibrium 
amplitude ’ for bedforms the available literature reduces to the nonlinear kinematic 
analysis by Exner (1925) and to the more recent attempt by Fredsrae (1982) referring 
to stationary dunes. In  fact the problem of evaluating finite-amplitude effects on 
bedform development is generally made extremely difficult by the presence of flow 
separation with consequent difficulties in modelling the flow structure. 

In the following we shall concentrate our attention on the nonlinear development 
of alternate bars. The developed structure of these bedforms is characterized by a 
sequence of riffles and pools: more precisely each bar unit is limited by two 
consecutive diagonal fronts (see figure 1)  with a pool a t  the downstream face of each 
front along the channel banks. Linear stability analysis, mentioned above, cannot 
explain the longitudinal asymmetry embodied in the front which appears to be 
associated with nonlinear effects. 

Though the problem of predicting an equilibrium amplitude for these bedforms is 
conceptually similar to those concerning disturbances of smaller lengthscale (ripples, 
dunes, etc.), it  has the advantage that the effect of flow separation on alternate-bar 
development is rather weak. Indeed the presence of alternate bars contributes little 
to resistance a t  least for active gravel beds, as has been shown both by flume 
experiments (Shen 1962; Jaeggi 1984) and by field observations of streams at  
active flood stages (Bray 1979; Parker 1978). 

This premise then encourages one to assume that an approximate representation 
of the flow field by means of a depth-averaged model, which is obviously unable to 
predict separation, might still be suitable to model the gross features of flow structure 
and bed topography. Such a simplification of the flow model then allows one to try 
to formulate a weakly nonlinear stability theory following ideas well established in 
the field of hydrodynamic stability of laminar flows (see for instance Stuart 1971). 
The perturbation parameter is the linear disturbance growth rate in a neighbourhood 
of the critical conditions for alternate-bar formation. The latter are defined by a 
critical value p, of the width ratio of the channel for each set of flow and sediment 
parameters. 

This procedure is found to work successfully and leads to the prediction that for 
/3 > /3, the amplitude of bed perturbations does tend to reach an ‘equilibrium value’ 
that is finite and stable being the solution of a classical amplitude equation of the 
Landau-Stuart type. Comparison with experimental results for the amplitude of 
alternate bars appears to support the convergence of the present approach within 
a wide range of values of the parameter (/3-/3,)/Bc. Furthermore, though unable to 
predict details of the flow structure like local separation at  the pools, the analysis 
does predict a tendency for the formation of diagonal fronts which appears to be 
associated with the role of higher harmonics of the flow field. 

The ability to predict the amplitude of alternate bars is also of practical importance 
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FIGURE 1. Sketch of alternate-bar structure. 

since it provides the basis for preventing or controlling the processes of scouring and 
subsequent side-bank erosion associated with the development of these bedforms. 
This problem has acquired an increasing importance in highly developed countries 
with densely populated areas where river regulation work, such as channelization and 
artificial straightening motivated by land reclamation purposes, led to the unexpected 
appearance of alternate bars with consequent risks of bridge or bank failures (Ikeda 
1982). 

In $2 we formulate the problem of shallow-water flow in straight channels with 
erodible bottoms. In  $3 we give some results of a linear stability analysis of uniform 
flow in straight channels with respect to disturbances of the 'bar' type; $4 is devoted 
to formulating and solving the weakly nonlinear stability problem posed in the 
neighbourhood of the critical conditions. Finally, theoretical results and comparison 
with experimental findings follow in $5 along with some discussion of the limits of 
validity of the present approach. 

2. Formulation of the problem 
Let us consider flow in a straight alluvial channel with constant width 2B* and 

non-erodible banks. The channel width is assumed to be large enough for the flow 
to be modelled as two-dimensional. 

Let s* be the longitudinal coordinate, n* the radial distance from the longitudinal 
axis and t* the time. The St Venant equations of quasi-steady shallow-water flow in 
a straight channel with a slowly varying erodible bottom are written in terms of the 
above coordinates in the form 

VU,,+ UU, ,  = - H , 8 - - ,  P78 

D 

PTn V V ,  + UV,  = - H ,  --, D 

Cq H - D ) ,  t + Qo(Qn, n + Q,, 8 )  = 0, (4) 

v =  Qn = 0 (n = kl ) ,  (5a, b )  

where ( U ,  V) are depth-averaged velocity components in the axial and radial 
directions respectively, 7, and 7, are bottom shear stresses, H is water-surface 
elevation, D is local depth, Q8 and Qn are sediment flow rate components in the axial 
and radial directions and F, is the unperturbed Froude number. 
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Also, Q, is the ratio between the scale of sediment discharge and the flow rate and - 
B* 

, B=- d,*{(PslP - 1)  gd,*Y 
B is width ratio. We find 

‘O= (l-p)D:U,* D,* 

where ps and d,* are density and diameter of the sediment modelled as uniform, p is 
water density, g is gravitational acceleration and p denotes sediment porosity ; finally 
U,* and Dtare average speed and depth for the uniform unperturbed flow. 

The variables have been made non-dimensional in the form 

(U*,  V*)  = U,*(U, V ) ,  (h*,D*) = D:(F,H, D), (7a, b)  

(s*, n*) = B*(s ,n) ,  (78*,7,*) = pu:2(~s, 7n), (7c,  4 

The boundary conditions ( 5 )  express the physical requirement that the channel 
walls be impermeable both to the flow and to the sediment. 

In order to ‘close’ the mathematical problem we need to formulate expressions 
which relate shear stresses 7 and sediment flow rate Q to flow characteristics. 
Following a well-established procedure (see for instance Parker 1976 ; or Blondeaux 
& Seminara 1985, hereinafter referred to as B&S) we express the shear stress r in terms 
of a friction coefficient C defined by the relationship 

7 = (T8,7,)  = ( U ,  V )  (iY+ P)&. (8) 
In the following we shall assume the unperturbed bed configuration to be planar 

and employ Einstein’s (1950) formula 

where the roughness parameter has been put equal to (2.5d,*) after Engelund & 
Hansen (1967) and a non-dimensional sediment diameter ds = d,*/D,* has been 
introduced. 

Assuming sediment to be transported mainly as bed load and modelling the 
influence of transverse bed slope on the direction and intensity of bed-load motion 
aa suggested by Engelund (1981) (see also Parker 1984; and B&S) we associate the 
local direction of sediment transport with an average direction of particle trajectories 
which deviates from the direction of average shear stresses under the action of 
gravity. Thus in non-dimensional form we write 

Q = (Qs, Q,) = (coss, sin&) @. (10) 

For relatively small values of 6 Engelund (1981) derives the following formula: 

(11)  
r 

sin&= V ( V +  P)-:--(CH-D),n 

where 6 is Shields parameter and T is a constant which Engelund (1981) suggested 
should assume the value (0.5-0.6). In the present calculations, in accordance with 
Olesen’s (1983) results, lower values of r (around 0.3) have been found to lead to 
more satisfactory predictions of alternate-bar formation compared with experimental 
data. 

We must stress the approximated character of (11) in the present context. Indeed 
not only does the derivation of (1 1) obviously require an interpretation in a somewhat 

B64 
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‘averaged’ sense of the dynamics of sediment grains along curved paths on a sloping 
bottom, but it applies to a linear context. The extension of (11) to the weakly 
nonlinear case is possible but would involve algebraic complications which do not 
seem justified at this stage. Obviously further investigations are required to sub- 
stantiate the implication of neglecting this effect. 

Finally the equilibrium sediment load function @ is expressed employing the Meyer 
Peter-Muller formula in the form given by Chien (1954), namely 

@ = 8(6-6,,)~, a,, = 0.047. (12% b)  

We point out that the case where the ‘undisturbed’ bed is dune covered has not 
been considered: indeed, as suggested by one of the referees, alternate bars are found 
to coexist with dunes only in sandy rivers. The analysis of this case is not obvious, 
possibly requiring a more accurate three-dimensional model of the flow field, 
separation being a crucial feature of the flow structure characteristic of dunes. 
Furthermore the distinct role of sediment transported in suspension might be 
relevant at least for large values of 6. 

3. Linear theory 
Linear theory investigates the conditions required for the unperturbed uniform 

flow to lose stability to perturbations periodic in the 8-direction and small enough 
for linearization to be a valid approximation. Thus let us examine disturbed flows 
of the form 

(u ,D,H,  J‘) = (1,1,HO,O)+A(Ui,Di,Hi, V,), (13) 

(7897n,Q,,Qn) = (co,O, @o,O)+A(7gl,7,1,Qgl,&ni),  (14) 

with A small (strictly infinitesimal). In  (14) C,  and @, respectively denote the friction 
coefficient and bed-load function of the undisturbed uniform flow. 

On substituting from (13) and (14) into the differential system (1)-(4) and 
performing the linearization, the following differential problem is obtained : 

4 . 8  +Hl, 8+8(781-D, C,) = 0, ( 1 5 4  

V,,s+Hl,n+87n1= 09 (15b) 

&,8+  V,,n+D,,, = 0, ( 1 5 4  

( 1 5 4  4 HI, t-Dl, t + QO(Qn1, n + Qs1, 8 )  = 09 
where, using the relationships (8)-(12), 781, 7n1, QS1 and Q,, can be expressed in the 
form 

= cJ~1 Ul+saDl), 7n1 = Qo V,, (16a,  b )  

Qs1= @ o ( f i  Ul+faDi), Qn1 = @o{V,-R(4Hl,n-Di,n)}, (16~7 d )  

with 81 = 2(1-CT)-’, 82  = CD(l-cT)-’, (17a, b)  

( 17 c-e) 

where 6, is Shields parameter of the undisturbed uniform flow, and CD, C,, GD and 
@, are defined as 
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A normal mode analysis of the perturbation is then performed by assuming 

(ul> D,, K) = exp (52t) (S,(n) u17 S,(n) d17 S,(n) hl? C,(n) ‘1) t ,  + c*c. 

(m odd), (19a) 

( u 1 7  D 1 >  K)  = exp (52t) (C,(n) u 1 7  C,(n) dl? C,(n) h17 S,(n)V1) t ,  +c*c. 

(m even), (19b) 

where C.C. (or an overbar) denotes the complex conjugate of a complex number and 
we define 

(20% b)  

E, = expmi(As-wt), (204 

S,(n) = sin (inmn), C,(n) = cos (tnmn), 

with A,  w and i2 real quantities that denote wavenumber, angular frequency and 
growth rate of the perturbation respectively. 

On substituting from (19) and (20) into (15) and (16) the differential system (15) 
is transformed into the following linear homogeneous algebraic system : 

a, ,u l+a~z~l+a~sh,+a,4d,  = 0 (i = 1,2,3,4) ,  (21) 

where, for the case of alternate bars (m = 1 )  

a,, = iA+/3Cos1, a12 = a,, = aZ4 = ass = 0, (22 a-e) 

a13 = asl = as4 = iA, a14 = /3Co(s2- I ) ,  (22fW 

a2, = iA+/3Co, ass = -a3, = in, (22.i-O 

a41 = iA&lJ @Of,, a42 = -go @O (22m7 4 
= q ( ~ o @ o R n 2 + 5 2 - i w ) ,  (220) 

a44 = Q0 @o(iAf,-~n2R)-52+iw. (22P) 

The algebraic eigenrelation associated with the system (21) defines a dispersion 
relation which takes the form of (50) of B&S, and can be written in the general form 

f(52,w,A,/3;9,ds) = 0. (23) 

For given values of 9 and d ,  (23) allows one to define ‘neutral’ conditions by 
requiring that the amplification factor 52 of the bar perturbation should vanish. In 
the plane (A , /? )  this condition determines a neutral curve which may exhibit a 
minimum at A = A, and /3 = /?,. A typical neutral curve is plotted in figure 2 for the 
case of alternate bars (m = 1) .  

However before investigating nonlinear effects it may help the reader to point out 
that a simple physical interpretation of bar instability can be given following the line 
of reasoning proposed by Engelund & Fredscle (1982) to explain the development of 
mesoforms. In fact, if the linear solution is written in the form 

cos (As - w t )  P4a) 
(24b) 

cos (As--wt-8,) (24c) 

( 2 4 4  

H ,  exp (Qt) sin (@nn) [ cos (As-wt-8,) ] E H 1 - 4  

[ 2, ]=[::I 
&,, = &,, exp (at) cos (@nn) cos (As-wt-aS,) ,  

sediment continuity leads to the following relationship for the growth rate 51 : 
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0 A, 0.5 1 .o 1.5 

FIQURE 2. A typical neutral curve for alternate-bar formation (9 = 0.3,d,  = 0.01, 
unperturbed bed assumed to be plane). 

A 

Thus instability is shown to depend not only on the phase lag 8, between bed profile 
and longitudinal sediment transport, as in the case of two-dimensional mesoforms, 
but a150 on the phase lag 8, between bed profile and transverse sediment transport. 
A discussion similar to that given by Engelund & Freds~re (1982) suggests that the 
contribution of fluid friction to 8, is negative (i.e. destabilizing) and dominant when 
sediment transport mainly occurs as bed load. 

The contribution of transverse sediment transport to B consists of two terms. The 
former is proportional to transverse shear stress, i.e. to V,. The transverse component 
of the momentum equation (15b), along with (16b), suggests that V, lags behind If,, 
the phase lag ranging between x and $. Since H, is nearly in opposition with respect 
to bed profile (8, N f n), i t  follows that the first contribution to S, ranges between -+x 
and 0, leading to a contribution for B that is positive. It may also be readily seen 
to be proportional to m, thus predicting increasing instability for higher-order modes. 

The second contribution of transverse sediment transport to 51 is related to the 
effect of gravity which is obviously stabilizing and proportional to m2 (see (15d), 
(16d)  or the dispersion relation given by B&S, equation 50). The latter effect inhibits 
the development of higher-order modes and its balance with the destabilizing effects 
previously discussed determines the number of branches (m) selected by the 
instability process and the wavenumber aasociated with maximum growth. 

Within the context of a linear theory the amplitude A is an arbitrary infinestimal 
factor. In  the next section we shall relax the linear constraint by assuming that t!? 
and h fall within the neighbourhood of the critical conditions. 

4. Weakly nonlinear theory 

nonlinear regime defined by the conditions 
We seek a finite-amplitude solution, restricting our attention to the weakly 

/3 = / 3 , (1+€) ,  h = &+A,€. (26a, b )  

In  (26a, b) it  is assumed that E @ 1 ,  though it will appear in the following that the 
present approach i3 surprisingly convergent even for e - O(1). 

8 FLY 181 
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It may be useful to clearly point out the kind of experiment implied by the 
assumption (26a). We consider a given uniform flow per unit width (i.e. we assume 
the basic water-surface slope S, the basic uniform flow depth DO* and the basic 
discharge per unit width to be given) and allow the width of the channel to vary in 
the neighbourhood of the critical value below which alternate bars would not develop 
according to the linear theory. Furthermore (26 b) implies that disturbances are 
followed in the weakly nonlinear regime allowing their wavenumber A to be ‘slightly’ 
perturbed with respect to the critical value A,. 

Following the lead of Stuart (1971) we employ a multiple-scale technique and define 
a ‘slow ’ timescale T associated with the growth of perturbations such that 

a a  a 
at at aT‘ T=&, -+-+€- 

In  order to derive the order of magnitude of the amplitude of perturbations we 
follow the usual argument of hydrodynamic stability : nonlinearity gives rise to 
interactions between the fundamental and itself which lead to the generation of 
higher harmonics both in the longitudinal and in the transverse directions. Following 
the above cascade process one finds that the fundamental (19) is reproduced at third 
order, which leads to the generation of secular terms. In  order to prevent their 
occurrence the ‘ slow ’ time dependence of the amplitude of the fundamental must also 
be forced to produce a contribution at  third order. 

In  other words B aA/aT must balance A3, which occurs provided A - O(&). We then 
expand the solution in the form 

4.1. O(&) 

On substituting from (28), (29) into the differential system (1)-(4) and equating like 
powers of E, at O(&) we obtain the differential problem (15a-d) with /3 replaced by 
/3,. This system admits a solution of the form 

where (ul,dl,hl,vl) are solutions of the algebraic system (21) with m equal to 1, 
( A ,  /3, w )  again replaced by (A,, pc, 0,) and SZ vanishing. For the sake of convenience 
the latter will be written in the form L1lk]=Oj 
with L,, an algebraic operator with an obvious definition. The function A ( T )  in (30) 
is now a ‘slowly varying’ function of time to be determined. Obviously in the linear 
regime (i.e. for T+- co) A will have to exhibit an exponential behaviour. 
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4.2. O(e)  
The next-order problem is obtained by substituting from (28), (29) into (1)-(5) and 
equating terms O(s). We find 

(32a) 

(32b) 

(324 

H2,,-D2,,+&O(&,2,,+&82,8) = ( 3 2 4  

~ 2 , 8 + ~ 2 , 8 + B c B c ( 7 8 2 - ~ 0 ~ 2 )  = -'1 U1.s- ~ , ' , , , - B c ~ ~ 0 - 7 , 1 ~ 1 + ~ 0 ~ ~ ~ ~  

V , , S + H 2 ,  n + B c 7 n 2  = - v15, n- '1 K : , e + B c D 1 7 n 1 ,  

' 2 ,  8 + K, 78 + D2, 8 = - Dl 5, 1L - 5 Dl, I - ' 1  Dl,  8 -Dl ' 1 . 8 ,  

Again in order to transform the system (32a-d) into a differential problem for 
(U2,D2, H2,  V,) one needs to express 782, 7n2, Qn2 and QS2 in terms of the above 
variables using the ' constitutive ' relationships already mentioned. This procedure 
is straightforward but involves a considerable amount of algebra. We eventually find 

( 3 3 4  

(33b) 

(334  

( 3 3 4  

782 = CO{[A2E2(C2(n) t822 + t802) + c*c'l + A2(c2(n) t820 + t800)}9 
&82 = @0{[A2E2(C2(n) !?a22 + 4802)  + c'c*l + A'(C2(n) qSZO+ q S O O ) ) ,  

7 n 2  = C 0 { ( A 2 E 2  8 2 ( n )  t n 2 2  + C.c-1 + A 2 8 2 ( n )  tn201,  

&n2 = @ 0 { ( A 2 E 2  8 2 ( 4  q n 2 2  + C.C.1 + A Z 8 2 ( n )  Qn201. 

In each of the coefficients of (33a-d) two components can be distinguished, the 
former involving linear expressions in terms of the O(s)-components of the flow field, 
the latter involving products of the O(&-components. Thus we write 

I I  

(t820' t822, t800, t802) = (tL209 t822, t800, ' i 0 2 )  +81(u20, U22, uOOt u02) +82(d209 d229 dOO, 

(q820' q822' q800' q802)  = (qi207 q i 2 2 ,  !?iOO, q : O Z )  + ~ f 1 ( ~ 2 0 ,  u22, uOOy u02)+f2(d209 ' 2 2 ,  dOO, 

(34a) 

(34b) 

(344 

( 3 4 4  

with the primed coefficients given explicitly in Appendix A. For simplicity the 
functions tnO2, tnOO, qno2, qnoo are not included in (34c, d) because they are seen to 
vanish owing to the sidewall boundary condition expressed below. 

In (34a-d) the following decomposition of the O(s) solution has been assumed: 

(tn209 t n 2 2 )  = (t',20, G 2 2 )  + (2120' 2122)' 

( q n 2 0 ,  q n 2 2 )  = (Qi209 q i 2 2 )  + (2120, v 2 2 )  + m J w 2 0 ,  h 2 2 )  - (d20 '  d22)19 

( U 2 9  4' H 2 )  = { A 2 E 2 [ C 2 ( n )  ( u 2 2 ,  a229 A221 + @02' do27 h02)I + C.C.1 

+ A ' { C 2 ( 4  (u209 d 2 0 ,  h 2 0 )  + ( u o o ,  do,, boo)}+ (0'0, Hoe), (35a) 

(35b) V, = {A2E,(8,(n) 2122 + wO2) + c.c.} + A&S2(n) vUz0+ voo). 

It appears from (35a) that the nonlinear iteractions produce at O(E)  a correction 

Furthermore a correction Hoe, is required for the basic water-surface slope since 
(uoo, doO, hoo) of the basic uniform flow. 

the actual width ratio has been expressed in the form (26a); thus 

Hoo, 8 = - B c  CO. (36) 
Clearly the above correction is due to the non-dimensionalization employed where 

On substituting from (33) and (35) into (32), after some manipulations we then find 
different lengthscales have been used for h* and s*. 

the following linear non-homogeneous systems. 
8-2 
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The system for the harmonic of order 2 in the transverse direction and order 0 in 
the longitudinal direction is 

= 0. (37) 1 
I 

{+Nu, @,I +YC CJd, t,, -4 a,, + c.c.1 +Pc Po t;20 

w,~-~nwl-iihcul+~,Co(t, ,-u,-d,)}+~.~~. 

L,, h,, + ~xd,@,+c.c. 

Qo @, g - xw, T i ,  + iRn2t,,( q h, - d , )  
+ R Q s , [ ~ , - ~ R A ( ~ h 1 - d , ) l } + ( ~ . ~ .  

[ I  I 
L22b] [ 

where t,, and qsl are the coefficients of the expansions of (T,,/C'~), in thc form 
(30) and L,, is the operator obtained from L,, by replacing i(Ac, w c )  with &Ac, w c )  
and in with [( - l)P-'@px]. 

Similarly the system for the harmonic of order 2 both in the longitudinal and 
transverse directions is 

= 0. (38) 

u2, K R U ,  w1 - 2ihc u: + 2pc Po ( d ,  t,, - d: + gt:,,)} 

~ l {  -;q + ihc u1 +pc Co(t,, - u,-d,)} 

:Qo@o{-x~l ~1+iRn2t,l(FZhl-dl) 

+ (!p, - ih, u,) d ,  

+ nq,,[v, -+me 4- a+ 4% d 2 2 )  

and the algebraic system for the harmonic &2 is of the form 

Thc O(c) distortion of the basic flow associated with the perturbation is governed 
by the algebraic system 

The above systems are supplemented by appropriate boundary and integral 

(i) The requirement of V, vanishing a t  the walls implies 
conditions as follows : 

woo = wo2 = 0. Wa, b)  

(ii) The condition of vanishing sediment flow rate at the walls is automatically 

(iii) The condition that flow discharge per unit width should not be altered by the 
satisfied by the present solution. 

development of perturbations reads 

UDdn = 2. S1, 
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Equation (42) is satisfied at O ( d )  and leads a t  O(E)  to the following relationships: 

2u00 + 2do, + u1 a, + u1 d ,  = 0, 

2uO2 + 2dO2 + u1 d ,  = 0. 

(iv) Finally the condition of constant average reach s lop  gives 

Sf/' ds I' (q H -  D )  dn = const. 
-1 

(45) 

Equation (45) is automatically satisfied at O(d) and requires at O(E) that 

F,hoo-doo = 0. (46) 

4.3. O(A) 
Finally the differential problem found at  O(&) when substituting from (28) and (29) 
into (1)-(5) is 

u 3 , 8 + H 3 , 8 + 8 c ( 7 8 s - c 0 D 3 )  u z 9 8 - u z  u i , 8 - v 1 u  2, n - b"1,n 

-/3,{Co(2D1 D2-D:-D1)+7,,(1 +Dt-D2)-782 0,). ( 4 7 ~ )  

b , s + H s , n + P c 7 n 3 = - b  V1.n-Vl V 2 , n - u i  V2,s+U2Vi:,s 

- P C { T ~ , ( ~ + D : - D ~ ) - D ~  7 n 2 ) ~  (47b) 

us,,+ J ' , , n + 4 , s  = - D l  V2,n-Dz V1.n-ViD2.n 

- V2 4, n -Dl u2,8 -D2 ui. 8 -  ui Dz, s - u2 D1, 8 9  (47 c) 

(47 d )  ( ~ H 3 - D S ) , t + & O ( Q n 3 , n + & 8 3 , 6 )  = - F , H l ,  T + D ~ .  T, 

where we again need to express 
tedious algebra gives 

T ~ , ,  Qn3,  Qs3)  in terms of the flow field. Some 

(48a) 

(486) 

(484 

Qn3 = @o{El Cl[A2~q',l,+AQnll-fRx(FZ,h,,(T)-d,,(T))]+c.c.}+ higher harmonics, 
(484  

where the term proportional to A arises as an O(d) correction of the gravitational 
contribution to sin6 (see ( 1 1 ) ) .  

In (48a-d) the primed coefficients are quantities expressed in terms of products 
of the leading- or second-order components of the flow field and are given in detail 
in AppendixBt along with the quantity Qnll. Both give non-homogeneous 
contributions to the O(d) system. In  (48a4) it  has already been assumed that the 
solution for (U,, D,, H,,  V,) can be given the form 

(49u) 

(49b) 

7,, = co{El S1[A2~t:,, +a, ul,(T) +a2 d, , (T)]  + C.C.} + higher harmonics, 

Qa3 = @o{-E, S,\A2&:,, +fl ull(T) +f2 d,,(T)] + c.c.} + higher harmonics, 

T,, = Co{E, C1[A2~'thll + wl,(T)] + c.c.}+ higher harmonics, 

(Us, D,,H,) = {E,S,(n)  [~~~(T),d~~(T),h~~(T)]+c.c.}+higher harmonics, 

Vs = {El C,(n) v,,(T) + c.c.}+ higher harmonics. 

t Copies of Appendices B and C are available from the Journal of Fluid Mechanics editorial office. 
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Thus at  third order the spatial dependence of the fundamental is reproduced. The 
non-homogeneous algebraic system for (ull, dll, h,,, wll) is then found by substituting 
from (48) and (49) into the differential system (47), giving 

Lll [;I 
where the quantities plYs are lengthy algebraic expressions involving the O ( d )  and 
O(s)  components of the flow perturbations and the basic flow. They are given in detail 
in Appendix C t .  

For the system (50) a solvability condition has to be satisfied because its 
homogeneous part admits a non-trivial solution. Solvability is ensured provided the 
following condition is satisfied 

'11 %2 '13 (A2zp1+A2)2) 

'21 '22 '23 (A2zP3+Ap4)  

'31 u32 '33 (A2zP5+Ap6)  

u41 '42 '43 ( A2Ap7 + A p 8  + P 9  a) 
= 0, 

dA 

which readily reduces to the following nonlinear ordinary differential equation for 
the amplitude function A( T )  : 

(52) 
dA 
-+aa,A+a2A22 = 0, 
dT 

where a, and a2 are expressed through p,-p, in terms of the solution of the O(d) and 
O(s)  systems. Equation (52) is of the LandauStuart type and thus exhibits the 
following important features : 

(i) if the cubic term is neglected one recovers the usual exponential behaviour of 
A (T)  predicted by linear theory ; 

(ii) nonlinear effects inhibit growth and lead to an equilibrium amplitude A, 
reached as T-+ co provided the real parts of a, and a2 have different signs. In fact 
on manipulating (52) it  is found that 

(iii) the phase 8 of the amplitude function is also readily derived from (52) and 
reads 

A ,  = lAel expi@(T), (54') 

8 =-{I  m (a11 + Im (012) lAe121 T. (54b) 

Equation (54b) shows that the wave speed of alternate bars is affected by 
nonlinearity. 

t Copies of Appendices B and C are available from the Journal of Fluid Mechanics editorial office. 
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5. Results and discussion 
Even though each of the systems derived at  the various orders of approximation 

could in principle be solved analytically, the numerical approach was found to be far 
more convenient. It consisted of solving the various linear algebraic systems obtained 
at the various orders of approximation by a classical Gausdordan elimination 
procedure. 

We first checked that the criterion for alternate-bar formation as predicted by the 
linear theory was indeed confirmed by experiments. We examined the experimental 
results of Kinoshita (1961), Ashida & Shiomi (1966), Chang, Simons & Woolhiser 
(1971), Sukegawa (1971), Muramoto & Fujita (1978), Ikeda (1982) and Jaeggi (1983). 
It may be useful to point out that in these experiments the values of the dimensional 
parameters flow rate &*, grain size d,* and slope S fell in the following range: 

&* = ( 0 . 2 4 . 3 )  l/s, d,* = (0.184.0) mm, S = (0.44 x 10-3-0.1). 

Figure 3 shows the results of a comparison performed for each of their experiments. 
The line (/3 = /3,) separates the region where alternate bars are not expected to form 
on the basis of the present theory from the region where they are expected to form. 

It appears that the agreement is quite satisfactory and few points show 
disagreement. Most of them are either close to a,, or their classification was dubious 
even for the author who performed the experiment. The uncertainty associated with 
the region close to a,, arises because the theoretical value of 8, falls quite rapidly 
close to 9 = a,, (see figure 6 below), so that a relatively small error in a,, leads to 
a relatively large error in /&. 

Though the linear aspects of the present theory do not differ from those presented 
in B&S it  may be helpful to compare further our predicted critical wavelengths with 
experimental values detected by the authors mentioned above. This comparison is 
shown in figure 4. 

We then evaluated the equilibrium amplitude lAel defined by (53) where Re (al) 
and Re (a2) were always found to have different signs. We point out that the value 
of h which leads to the maximum value of lAel for any given set of parameters is not 
significantly altered with respect to A,. In  fact we find that the value of A, in (26b) 
is O( 10-2-10-1). 

Thus we could compute the height of alternate bars at equilibrium HBM defined 
as in Ikeda (1982) as the difference between the maximum and minimum bed 
elevations within a bar unit (scaled with 0;). Neglecting terms O(dIAe13) we find 

where b,(6, G?,) and b2(9 ,  d,) are complicated functions of the components of flow field 
at  O(&) and O(E) .  They are plotted in figure 5 while figure 6 shows the function 
/3,(S, d,) for some values of d,. Figure 7 shows a comparison between the experimental 
values of H B M  ascertained by the authors mentioned above and the theoretical 
predictions obtained using (55). We included data such that (IAeI d) did not exceed 
0.6 in order for the O(lA,13 A )  term neglected in (55) to be expected to be reasonably 
small. Since lAel ranges about (0.2-0.3) the range of values of 8 included in figure 7 
is rather wide and it is interesting that a satisfactory agreement is found even for 
high values of E .  

Few data are sharply underestimated. This occurs in some of the cases when /3 is 
so close to pc that a relatively small error in the theoretical prediction of 8, leads 
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FIQURE 3. Criterion for alternate-bar formation: comparison between present results and experi- 
mental findings of various authors. Theory predicts occurrence of alternate bars if p > 8, (i.e. above 
the solid line B = p,). 0 and denote 'alternate bar' and 'no alternate bar' respectively as found 
experimentally. 
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FIQIJRE 4. The dimensionless wavelength of alternate bars (scaled by the half width B*) as predicted 
by the linear theory Lth is compared with experimental data Lexp of various authora: 0,  Jaeggi 
(1983) PVC; 0,  Jaeggi (1983) sand; 0, Sukegawa (1971); ., Kinoshita (1961)' 0, Muramoto & 
Fujita (1978); +, Ashida& Shiomi (1966); A, Ikeda (1982); A, Chang, Simons & Woolhiser (1971). 
Data falling between solid lines are such that -Lexpl < 40 % Lexp. 
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FIQURE 5. The functions 6, and b, are plotted in terms of 6 and d,. 
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FIGURE 6. The critical value of width ratio p, predicted by the present theory is plotted versus 
9 for some values of a,. 

to a large error in the evaluation of (/3-/3c)//3c, As mentioned above it appears from 
figure 6 that /3, falls quite rapidly to zero close to 8 = 1 9 ~ ~ :  this feature may again 
lead to relatively poor predictions of HBM in this range. 

Indeed evaluation of the percentage error associated with the comparison shows 
that: it is not significantly correlated with d,; it increases slightly with increasing 
8 (i.e. with increasingly strong nonlinearity); i t  exhibits a sharp increase close to 
6 = 8cr. 
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. 

0 1 2 3 4 5 

FIQURE 7. The maximum height of alternate bars as predicted by the present theory (HB&, is 
compared with experimental data (HBM)exp of various authors: 0,  Jaeggi (1983) PVC; 0,  Jaeggi 
(1983) sand; (7, Sukegawa (1971); ., Kinoshita (1961); 0, Muramoto & Fujita (1978); +, Ashida 
& Shiomi (1966); A, Ikeda (1982). Data falling between solid lines are such that 

( H B M L *  

I(HBM)th-(HBM)e~pl < 40 % (HBM)exp. 

It may also be of some interest to compare our theoretically predicted formula (55) 
with the empirical formula suggested by Ikeda (1982, equations (16) and (19), pp. 36, 
38) which, using the present notation, can be put in the form 

(HBM)exp = 0.18 d:.45/31.45. (56) 
It appears that the influence of 9 is ignored in (56). This seems to be a limit of 

the above correlation since in the neighbourhood of the critical conditions each of 
the quantities b,, b, and pc plotted in figures 5 and 6 are quite sensitive to variations 
of 9. Formula (56) suggests that the relative maximum height HBM increases as d, 
increases. Since b, increases with d, for given 9 (except for a small neighbourhood 
of a,,), b2 is fairly independent of d, and /3, decreases with increasing d, for given 
9, the qualitative trend observed by Ikeda (1982) is confirmed by our theoretical 
predictions. 

The mean percentage error associated with the comparison plotted in figure 7 lies 
between - 56 yo and + 28 Yo : we point out that the present approach accounts for the 
presence of a $-dependence for HBM. 

A satisfactory agreement is also found between our prediction of the maximum 
relative scour (vM/HBM) (around 0.57) and the value 0.5 reported by Ikeda (1982). 
Figure 8 confirms the latter statement. 

.In figure 9 we give an overall prospectic view of bed topography for Ikeda’s (1982) 
run n. 22, obtained by truncating our expansion at O(E).  Though this representation 
must obviously be inaccurate, some of the natural features of alternate bars appear 
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FIGURE 8. The maximum scour qM calculated for the values of ( 9 , d , )  corresponding to the 
experiments referred to in figure 5 is plotted versus the maximum bar height HBM. The average 
dependence detected by Ikeda (1982) is represented by the solid line. 

FIGURE 9. An overall prospectic view of bed topography of alternate bars as predicted by the 
present model accurate to O(E). 

to emerge, namely the formation of diagonal fronts and the increased steepness of 
the bottom downstream of the fronts. It may help the reader to present the values 
attained by the amplitudes of each second-order harmonic for the bottom elevation 
in the case plotted in figure 9: we find 

1AeI2 (Ch22-d2.J = (7.66 x lo-', 0.24), IAe12 (e hzo-d20) = (0.15) 
I A , ~  ( p O 2 - d o 2 )  = (7.81 x 10-4,8.76 x 10-4). 
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The present theory cannot go as far as to predict separation, so that this 
representation is locally inadequate also owing to the limited number of harmonics 
retained in the computations. However the above results have shown that this 
limitation does not affect significantly our estimate of the height of bars. 

Finally let us come to some conclusions. The model proposed appears to explain 
satisfactorily some physically observed features : nonlinear effects inhibit indefinite 
growth leading perturbations to reach an ' equilibrium amplitude ' ; the development 
of higher harmonics tends to form diagonal fronts with high downstream steepness. 

Also, quantitatively satisfactory predictions of the maximum height of alternate 
bars are possible within a surprisingly wide range of 8. 

However various limitations of the present analysis will need further attention. In 
particular a more accurate representation of the flow structure would be required, 
particularly under strongly nonlinear conditions (/3 % 8,) and further features of the 
natural phenomena (sediment non-uniformity, role of suspended load, etc.) should 
be accounted for. Finally the possible coexistence of mesoforms (dunes) and mega- 
forms (bars) needs to be investigated. 

This work was supported by M P I  (Italian National Research Projects) and is also 
part of the junior author's (M.T.) Ph.D. thesis to be submitted to the University of 
Genoa. 

A short preliminary version of this paper was presented at  the meeting Third 
International Symposium on River Sedimentation, Jackson, 1986. 

where 
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